Эмбриональные стволовые клетки
Страница 2

Выделение плюрипотентных клеток человека открывает новые возможности перед исследователями, занимающимися поисками новых лекарственных веществ и их тестированием. Разнообразные клеточные линии (например, линии раковых клеток) используются в этих целях уже сейчас, а культура плюрипотентных клеток позволяет проводить тестирование сразу на нескольких типах клеток. Это не заменяет тестирование на уровне целого организма, но значительно облегчает поиск новых лекарственных веществ.

Одно из самых впечатляющих применений плюрипотентных клеток человека – это так называемая «клеточная терапия». Многие заболевания человека обусловливаются нарушением функционирования клеток или целых органов, и сегодня для устранения дефекта в таких случаях используется метод трансплантации. К сожалению, нередко повреждения носят множественный характер, и заменить все затронутые ими органы не представляется возможным. Плюрипотентные клетки, стимулированные к дифференцировке с образованием строго специализированных клеток, могут служить возобновляемым источником не затронутых поражением клеток, замещающих выбывшие из строя дефектные клетки. Это открывает широкие возможности для лечения самых разных заболеваний человека, включая такие серьезные, как болезнь Паркинсона, болезнь Альцгеймера, сердечнососудистые заболевания, ревматоидный артрит, диабет и другие.

Несмотря на всю перспективность описанного подхода, пройдет еще немало времени, прежде чем его удастся применить в клинике. Во-первых, необходимо выяснить, какие события предшествуют переходу клетки в организме человека к стадии дифференцировки; только тогда мы сможем направленно изменять ход событий, чтобы получить из плюрипотентных клеток именно те, которые нужны для трансплантации. Во-вторых, прежде чем вводить культивированные клетки в организм человека, следует решить проблему иммунологического отторжения. Поскольку плюрипотентные клетки, взятые из бластоцисты или ткани плода, вряд ли будут идентичны клеткам реципиента, необходимо научиться модифицировать их для минимизации этого различия или создать банк тканей.

В некоторых случаях проблему несовместимости удается решить, используя метод переноса ядра соматической клетки. Предположим, что пациент страдает прогрессирующей сердечной недостаточностью. Если взять у него любую соматическую клетку и ввести ее ядро в энуклеированную яйцеклетку-реципиент, мы получим химерную яйцеклетку, у которой практически весь генетический материал идентичен таковому у пациента. Из нее можно получить бластоцисту, а затем, отобрав клетки внутренней клеточной массы, – плюрипотентные клетки. Последние можно стимулировать к образованию клеток сердечной мышцы, идентичных в генетическом отношении нормальным клеткам пациента, и имплантировать их больному без необходимости подвергать подвергать его иммуносупрессорной терапии, чреватой серьезными последствиями.

Еще более впечатляющее применение стволовых клеток человека – генная терапия ex vivo. В этом случае в организм больного можно инфузировать не обычные стволовые клетки, а генетически модифицированные, которые замещают дефектные клетки или восполняют недостаток продукта того гена, который включен в геном инфузируемых клеток. Стволовые клетки можно получать от самого пациента или от совместимых с ним доноров. Следует отметить, однако, что генная терапия ex vivo с применением стволовых клеток человека делает лишь первые шаги. Гораздо более реальным является использование модифицированных эмбриональных стволовых клеток для создания трансгенных животных. Соответствующие эксперименты уже широко проводятся на мышах. Сначала получают эмбриональные стволовые клетки из внутренней клеточной массы бластоцисты мыши. Их генетически модифицируют (трансформируют) с помощью вектора, несущего нужный ген (трансген), культивируют и отбирают тем или иным способом. Популяцию трансфицированных клеток вновь культивируют и вводят в бластоцисты, которые затем имплантируют в матку «суррогатной» матери. Скрещивая животных, несущих трансген в клетках зародышевой линии мыши, получают линию трансгенных мышей. В геном стволовой клетки можно не только встроить полезный ген, кодирующий какой-либо необходимый организму продукт, но и направленным образом вывести из строя («нокаутировать») ген, кодирующий, например, какой-нибудь токсин. Трансгенных мышей с нарушениями в определенном гене широко используют в качестве модели для изучения заболеваний человека на молекулярном уровне [2].

Страницы: 1 2 


Прочие статьи:

Биокатализ
Способность рекомбинантной ДНК управлять синтезом ферментов расширяет область применений микроорганизмов в биотехнологии. Появляется возможность производить многие ферменты при сравнительно их невысокой себестоимости. Открываются пути сов ...

Биосинтез и распределение мембранных липидов
В мембранах эукариотических клеток обнаружено огромное количество разных липидов, причем они не распределены равномерно по разным клеточным мембранам. Эта неравномерность относится к распределению как полярных головок, так и ацильных хвос ...

Акселерация. Эпохальные колебания темпов развития
Концепция биологического возраста отражает внутригрупповую (в меньшей степени межгрупповую), т.е. «горизонтальную» дифференциацию темпов развития. Однако изменения темпов могут наблюдаться и в «вертикальном» аспекте при сравнении между со ...

Разделы