Трансляция у эукариот
Страница 1

Статьи » Экспрессия генов » Трансляция у эукариот

Бактерии обладают единственной универсальной системой трансляции, основные механизмы функционирования которой были кратко рассмотрены выше. В отличие от этого, клетки животных кроме основной системы трансляции, локализованной в цитоплазме, имеют дополнительную систему трансляции митохондрий, которая по ряду свойств приближается к бактериальной. Клетки растений обладают еще одной дополнительной системой биосинтеза белка, функционирующей в хлоропластах. Большинство данных о механизмах биосинтеза белка у эукариот было получено с использованием бесклеточных белоксинтезирующих систем. В последнее время важные результаты о механизмах трансляции у эукариот были получены с использованием стабильно трансформированных клеток животных и растений, выращиваемых в культуре. В ходе этих исследований установлено, что у растений и животных в основном функционируют одни и те же механизмы трансляции. Инициация биосинтеза белка эукариотическими рибосомами Как будет видно из дальнейшего изложения, инициация трансляции эукариотических мРНК может осуществляться, по крайней мере, тремя способами. В соответствии с первым наиболее распространенным механизмом (модель сканирования) рибосомы после взаимодействия с 5'-концевой последовательностью мРНК осуществляют поиск инициирующего AUG-кодона, перемещаясь вдоль 5'UTR. При реализации второго механизма рибосомы инициируют биосинтез белка на внутренних AUG-кодонах, удаленных от 5'-концевой кэп-группы. И, наконец, после освобождения полипептида из транслирующего комплекса рибосомы, не отделяясь от мРНК, способны реинициировать биосинтез белка на следующем инициирующем кодоне.

Факторы инициации трансляции. Большинство молекулярных механизмов, осуществляющих регуляцию экспрессии генов на уровне трансляции, реализуется на стадии инициации биосинтеза белка. По-видимому, этот факт находит свое отражение в большой сложности аппарата инициации трансляции. Помимо субъединиц эукариотических рибосом и белков, обычно ассоциированных с 5'- и 3'-концевыми последовательностями мРНК, в инициации принимают участие по меньшей мере 11 белковых факторов, построенных более чем из 25 полипептидов Элонгация полипептидных цепей в ходе эукариотической трансляции традиционно пользовалась меньшим вниманием исследователей по сравнению с инициацией, поскольку считалось, что ее механизмы в основных чертах идентичны таковым бактерий. Дальнейшие исследования показали, что данная точка зрения в основном соответствует действительности, хотя эукариотическая система трансляции обладает более сложным набором факторов элонгации.

Факторы и механизмы элонгации. Эукариотические клетки содержат в большом количестве фактор элонгации eEF1A, который является функциональным гомологом бактериального фактора EF1A(EF-Tu). Так же как и у бактерий, этот фактор образует тройной комплекс с GTP и аминоацил-тРНК, обеспечивая вхождение последней в А-участок элонгирующей рибосомы. Два других эукариотических фактора eEF1B и eEF2 резко отличаются от бактериальных функциональных аналогов EF1B(EF-Ts) и EF2(EF-G) по аминокислотным последовательностям. Гетеротримерный фактор eEF1B, как и его бактериальный аналог, катализирует обмен GDP на GTP в комплексе eEF1A–GDP. Фактор eEF2, по аналогии с бактериальными системами, обеспечивает транслокацию пептидил-тРНК в P-участок рибосом и перенос деацилированной тРНК в E-участок. У высших организмов этот фактор служит мишенью регуляторных воздействий через фосфорилирование. Замечательным свойством факторов eEF1A и eEF2 является способность связываться с компонентами цитоскелета эукариотических клеток. Полагают, что это их свойство может обеспечивать один из механизмов внутриклеточного транспорта мРНК, направляющих ее в полисомы. Растущий полипептид выводится в цитоплазму через канал, начало которого расположено на поверхности рибосомы, где он взаимодействует с белками, распознающими сигнальную последовательность, или с другими цитоплазматическими факторами, которые обеспечивают его направленный транспорт внутри эукариотической клетки. У бактерий растущая полипептидная цепь может вызывать уменьшение скорости элонгации, а природа предпоследней аминокислоты оказывает сильное влияние на терминацию трансляции. Предполагают, что такого рода эффекты являются следствием взаимодействия между строящимся пептидом и факторами трансляции, рРНК или непосредственно каналом, через который он переносится к поверхности рибосомы. Подобные механизмы, по-видимому, функционируют и у эукариот. У дрожжей, как и у E. coli, скорость элонгации трансляции снижается в присутствии редко встречающихся кодонов в мРНК. Наличие определенного числа таких кодонов вблизи сайта инициации трансляции значительно снижает скорость считывания соответствующих ОРС. На скорость декодирования мРНК рибосомами оказывают влияние и характер фолдинга строящихся полипептидных цепей, а также сигнальные последовательности аминокислот, определяющие направление их посттрансляционного транспорта внутри эукариотических клеток.

Страницы: 1 2


Прочие статьи:

Класс птицы, общая характеристика класса
Птицы - высокоорганизованные позвоночные животные, тело которых покрыто перьями, а передние конечности превращены в крылья. Способность передвигаться в воздухе, теплокровность и другие особенности строения и жизнедеятельности дали им возм ...

Наука и ее происхождение.
Наука - одна из форм общественного сознания, сфера человеческой деятельности, функцией которой является выработка и теоретическая систематизация объективных знаний о действительности. В дальнейшем, в ходе исторического развития наука прев ...

Класс Коралловые полипы / Anthozoa
п/класс Шестилучевые / Hexacorallia отр. Актинии / Actinaria и др. п/класс Восьмилучевые / Octocorallia отр. Морские перья / Pennatulacea и др. Коралловые полипы – раздельнополые животные. Гонады созревают в энтодерме. Сперматозоиды ...

Разделы