Наследственная информация и регуляция у растений
Страница 1

Статьи » Основные свойства цитоплазмы » Наследственная информация и регуляция у растений

Основное свойство образовывать один и тот же вид при развитии растения из воспроизводящей клетки, т. е. свойство наследственности, заключено в ядре и связано с ДНК.

Большое значение в регуляции функций организма играет цитоплазматическая связь между клетками. Они соединены цитоплазматическими нитями — плазмодесмами, объединяющими клетки как бы в единое целое. Впервые плазмодесмы были обнаружены проф. Горожанкиным.

Очень важную роль играет гормональная регуляция физиологических функций. В растениях образуются следующие гормоны: ауксины, гиббереллины, цитокинины, абсцизовая кислота и этилен. О значении каждого из этих гормонов будет идти речь ниже.

Световая регуляция осуществляется длиной дня, продолжительность которого влияет на развитие растений. Растения делятся на растения короткого дня, зацветающие лишь при укорочении длины дня осенью, растения длинного дня, зацветающие только при длине дня больше 12 ч, и нейтральные растения, зацветающие как на коротком, так и на длинном дне. Наконец, регулирование светом может осуществляться с помощью специального вещества — фитохрома. Фитохром имеет две формы: активную и неактивную. Активная форма тормозит рост, неактивная форма дает симптомы этиоляции. По своей природе фитохром близок к пигментам сине-зеленых и красных водорослей фикоциану и фикоэритрину. Освещение красным светом с длиной волны 660 нм переводит фитохром в активную форму, а более длинноволновый красный свет приводит фитохром уже в неактивное состояние.

Таковы в очень коротких чертах основы регуляции отдельных функций растений.

Как мы уже знаем, белковые вещества, составляющие основу живых организмов, построены из аминокислот. В организмах имеется свыше 20 аминокислот. Эти 20 аминокислот могут складываться различным образом и образовывать разнообразные белки, которые выполняют ту или иную функцию в организме. Число комбинаций сложения аминокислот почти безгранично, и это определяет специфичность отдельных белков. План построения белка из аминокислот заложен, или, как говорят, "закодирован", в молекуле ДНК, находящейся в ядре.

Нуклеиновые кислоты ДНК и РНК состоят из трех структурных элементов: азотистых оснований, сахара и фосфорной кислоты. Соединяясь, эти вещества образуют нуклеотиды. Нуклеиновые кислоты представляют собой продукты полимеризации (уплотнения) большого числа нуклеотидов.

Полимерами называют вещества, молекулы которых состоят из одинаковых, периодически повторяющихся групп атомов. Например, полиэтилен имеет строение: (—СНг—СНг)л—СНг—СНг— ДНК — сложный полимер с молекулярной массой от 4 до 10 млн. Она состоит из двух полинуклеотидных цепей, образованных большим числом соединенных между собой нуклеотидов. В состав ДНК входит сахар дезоксирибоза (С5Н10О4). ДНК очень чувствительна к действию кислот и при гидролизе в молекулярном растворе соляной кислоты при 60°С через несколько минут распадается на нуклеотиды.

Схема молекулы ДНК

РНК в отличие от ДНК состоит из одной цепи полинуклеотидов и вместо дезоксирибозы содержит d-рибозу (С5Н10О5). РНК распадается на нуклеотиды под влиянием щелочей. В ядре при непосредственном участии ДНК образуется РНК, которая содержит полученные oт ДНК сведения о порядке сложения аминокислот в различные белки. Эта РНК носит название информационной или посредника. На каждую нить информационной РНК садится по нескольку рибосом. Эта цепочка рибосом называется полисомой. В полисомах происходит синтез белка при участии содержащейся в рибосомах рибосомальной РНК. Отдельные рибосомы движутся по нити РНК, считывают заложенную в ней информацию (сведения), полученную в ядре от ДНК и укладывают аминокислоты в полипептидные цепи. Аминокислоты, образовавшиеся в процессе обмена веществ, под водятся к полисомам особой, тоже образовавшейся первоначально в ядре РНК-переносчиком или транспортной РНК названной так потому, что она переносит активированны соответственными ферментами аминокислоты на рибосомы. Таких различных РНК-переносчиков имеется примерно 20 по числу аминокислот, из которых строятся белки.

Таким образом, в синтезе белка в растениях участвуют различные РНК: рибосомальная РНК, информационная РНК передающая порядок укладки аминокислот в полипептидны цепи, и транспортная РНК, которая доставляет активированные соответственными ферментами аминокислоты к полисе мам. Такова схема синтеза белков в растении.

Каждая клетка организма содержит полный набор информации о строении всех белков, которые она может синтезировать. Поэтому из маленького кусочка листа многих растений, например бегонии, может развиться целое растение ил даже из одной клетки (в культуре тканей, см. ниже) может развиться целый организм. С другой стороны, только из ядра или только из цитоплазмы новый организм не образуется, так как весь процесс образования белков происходит только в целостной клетке, состоящей из ядра и цитоплазмы.

Страницы: 1 2


Прочие статьи:

Питание енотовидной собаки
Говоря о питании енотовидной собаки подчеркнем слабое развитие у неё хищничества. В пище преобладают наиболее доступные корма, состав которых зависит от сезона и характера местообитания, а также как мы считаем от урожайности в разные года ...

Образование биологических форм
Прежде чем заняться этим вопросом вплотную, обратимся к экспериментам, которые помогут нам разобраться в механизмах образования форм организмов (и отдельных органов). Для таких целей в биологии — так же, как и в других науках — обычно при ...

Глицин и пути его обмена
Глицин участвует не только в биосинтезе белков, но и в других многочисленных биосинтетических процессах, таких, как образование пуринов, порфиринов, креатина, этаноламина, холина, глутатиона и др. Глицин функционирует также в качестве инг ...

Разделы