Роль энтропии как меры хаоса
Страница 2

Но именно такими являются большинство известных нам систем. Изолированные системы классической термодинамики — это определенная идеализация, в реальности они — исключение, а не правило. Сложнее обстоит дело со Вселенной в целом. Если считать Вселенную открытой системой, то что может служить ее внешней средой? Современная физика полагает, что для вещественной Вселенной такой средой является вакуум.

Итак, синергетика утверждает, что развитие открытых и сильно неравновесных систем протекает путем нарастающей сложности и упорядоченности. В цикле развития такой системы наблюдаются две фазы:

1) период плавного эволюционного развития, с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию;

2) выход из критического состояния одномоментно, скачком и переход в новое устойчивое состояние с большей степенью сложности и упорядоченности.

Важная особенность второй фазы заключается в том, что переход системы в новое устойчивое состояние неоднозначен. Достигшая критических параметров (точка бифуркации) система из состояния сильной неустойчивости как бы "сваливается" в одно из многих возможных, новых для нее устойчивых состояний. В этой точке эволюционный путь системы, можно сказать, разветвляется, и какая именно ветвь развития будет выбрана — решает случай! Но после того как "выбор сделан" и система перешла в качественно новое устойчивое состояние — назад возврата нет. Этот процесс необратим. А отсюда следует, что «развитие таких систем имеет принципиально непредсказуемый характер. Можно просчитать варианты возможных путей эволюции системы, но какой именно будет выбран — однозначно спрогнозировать нельзя.

Самый популярный и наглядный пример образования структур нарастающей сложности — хорошо изученное в гидродинамике явление, названное ячейками Бенара. При подогреве жидкости, находящейся в сосуде круглой или прямоугольной формы, между нижним и верхним ее слоями возникает некоторая разность (градиент) температур. Если градиент мал, то перенос тепла происходит на микроскопическом уровне и никакого макроскопического движения не происходит. Однако при достижении градиентом некоторого критического значения в жидкости внезапно (скачком) возникает макроскопическое движение, образующее четко выраженные структуры в виде цилиндрических ячеек. Сверху такая макроупорядоченность выглядит как устойчивая ячеистая, структура, похожая на пчелиные соты.

Это хорошо знакомое всем явление с позиций статистической механики невероятно. Ведь оно свидетельствует, что в момент образования ячеек Бенара миллиарды молекул жидкости, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывали в хаотическом движении. Создается впечатление, будто каждая молекула "знает", что делают все остальные, и желает двигаться, в общем строю. (Слово "синергетика", кстати, как раз и означает "совместное действие"). Классические статистические законы здесь явно не работают, это явление иного порядка. Ведь если бы, даже случайно, такая "правильная" и устойчиво "кооперативная" структура образовалась, что почти невероятно, она тут же бы и распалась. Но она не распадается. При соответствующих условиях (приток энергии извне), а, наоборот, устойчиво сохраняется. Значит, возникновение структур нарастающей сложности — не случайность, а закономерность.

Поиск аналогичных процессов самоорганизации в других классах открытых неравновёсных систем вроде бы обещает быть успешным: механизм действия лазера; рост кристаллов; химические часы (реакция Белоусова—Жаботинского); формирование живого организма; динамика популяций; рыночная экономика, наконец, в которой хаотичные действия миллионов свободных индивидов приводят к образованию устойчивых и сложных макроструктур. Все это примеры самоорганизации систем самой разной природы.

Синергетическая интерпретация такого рода явлений открывает новые возможности и направления их изучения. В обобщенном виде новизну синергетического подхода можно выразить следующими позициями.

Хаос не только разрушителен, но и созидателен, конструктивен; развитие осуществляется через неустойчивость (хаотичность).

Линейный характер эволюции сложных систем, к которому привыкла классическая наука, не правило, а, скорее, исключение; развитие большинства таких систем носит нелинейный характер. А это значит, что для сложных систем всегда существует несколько возможных путей эволюции.

Страницы: 1 2 3


Прочие статьи:

Размножение и развитие
Азовский пузанок, достигнув половой зрелости к концу первого года жизни, собирается в устьях рек и опресненных лиманах, где с апреля по начало июня происходит нерест. Икрометание проходит в воде с содержанием соли до 2 %, при температуре ...

Влияние температуры
Современная биотехнология искусственного разведения осетровых рыб всецело зависит от температурного режима источников водоснабжения. По этой причине сроки работы с производителями, инкубация икры, подращивание личинок осетровых на действу ...

Царство бактерий. Общая характеристика
Известно около 2500 видов. Имеют клеточное строение, но не имеют ядра, отделенного мембраной от цитоплазмы. Бактерии по форме бывают: шаровидные (кокки), палочковидные (бациллы), изогнутые (вибрионы), спиральные (спириллы), в виде цепочк ...

Разделы