Ароматические аминокислоты нервной ткани и их метаболизм
Страница 1

Статьи » Свободные аминокислоты нервной системы » Ароматические аминокислоты нервной ткани и их метаболизм

Ароматические аминокислоты - триптофан, фенилаланин и тирозин - важны как предшественники 5-гидрокситрилтамина и катехоламинов, играющих чрезвычайно важную роль в нейрональных процессах.

Триптофан является незаменимой аминокислотой и не синтезируется в мозге высших животных. В мозге триптофан может переаминироваться с использованием щавелевоуксусной кислоты в качестве акцептора аминогруппы, а также декарбоксилироваться. Физиологическое значение первой реакции неизвестно. Наиболее интересный нейрональный путь метаболизма триптофана, которой составляет всего 5% от общего метаболизма триптофана в организме - это образование серотонина и мелатонина.

Первая ступень этого процесса - гидроксилирование триптофана в 5-м положении - катализируется триптофан-5-гидро-ксилазой. Энзим требует молекулярного кислорода и тетрагидробиоптерина в качестве кофактора. Этот фермент локализован исключительно в серотонинергических нейронах мозга. Он не полностью насыщен своим субстратом в мозге, Км для триптофангидроксилазы заднего мозга - 50 мкМ, а содержание триптофана там - 30 мкМ. Поэтому даже физиологические вариации уровня триптофана мозга влияют на синтез серотонина, а нагрузки триптофаном изменяют поведенческие реакции животных. Катехоламины являются сильными ингибиторами энзима, что говорит о тесной взаимосвязи между катехольными и индольными путями образования биоаминов.

Вторая ступень катализируется 5-окситриптофандекарбокси-лазой и ведет к образованию серотонина. В эпифизе серотонин при участии специфической ацетилтрансфера-зы ацетилируется с образованием N-ацетилсеротонина; последний подвергается О-метилированию с участием фермента метилтрансферазы, используя в качестве донора метильной группы S аденозилметионин При этом образуется гормон эпифиза мелатонин. Активность двух последних ферментов ответственна за изменение светового - темнового цикла у животных и зависит от циркадного ритма.

На содержание триптофана, а следовательно, и серотонина в мозге оказывает влияние характер используемой пищи; оно возрастает при приеме полноценных белков и богатой углеводами пищи. Углеводы стимулируют освобождение инсулина, который способствует поступлению в мышцы, а следовательно, удалению из циркуляции разветвленных аминокислот - конкурентов ароматических аминокислот за транспортные системы ГЭБ мозга. Таким образом, снижение уровня разветвленных аминокислот в плазме крови приводит к повышению транспорта ароматических аминокислот в мозг. Влияние пищи на поведение людей многие исследователи связывают отчасти с изменением уровня ароматических аминокислот в мозге, а отсюда и уровня биогенных аминов.

Запасы триптофана у животных составляют лишь 2-4% от дневной нормы, поэтому небольшие различия в скорости синтеза и катаболизма белка в зависимости от диеты или гормонального состояния могут вызвать большие изменения в уровне свободного триптофана. В регуляции уровня триптофана, а следовательно, и серотонина в мозге большую роль играет также кинурениновый путь катаболизма триптофана, реализующийся в печени. Этот путь инициируется триптофанпирролазой - печеночным ферментом, который использует главным образом триптофан из пищи и индуцируется как своим субстратом триптофаном, так и глюкокортикоидами. Гормон роста, напротив, предотвращает индукцию триптофанпирролазы триптофаном. Таким образом, триптофанпирролаза печени способствует удалению избытка триптофана из плазмы крови, что, в свою очередь, минимизирует изменение содержания триптофана в мозге.

Фенил аланин также является незаменимой аминокислотой и не синтезируется в мозге высших животных. В мозге происходит трансаминирование и декарбоксилирование фенилаланина. Эти реакции катализируются N-тирозин-2-оксоглутаратаминотранс-феразой и ДОФА-декарбоксилазой.

Главный путь метаболизма фенилаланина в целом организме - его гидроксилирование до тирозина с участием фермента фенилалашш-4-гидроксилазы - не обнаружен в мозге. Другие энзимы, присутствующие в мозге, могут катализировать гидроксилирование лишь небольшой части фенилаланина. Печеночная система гидроксилирования фенилаланина тщательно изучена, так как ее нарушение ведет к самому распространенному и тяжелому заболеванию, связанному с метаболизмом аминокислот, - фенилкетонурии. Система состоит из самой гидроксилазы, неконъюгированного птеридинового кофактора и пиридинсвязанной редуктазы для рециклизирования птеридинового кофактора. Гидроксилаза - сложный железосодержащий белок - является классической монооксигена-зой, требующей молекулярного кислорода в качестве окислителя, и L-эритротетрагидробиоптерина в качестве восстановителя. Второй энзим системы - дегидроптеринредуктаза - катализирует рециклизацию окисленного кофактора, используя НАДФН как источник электронов.

Страницы: 1 2


Прочие статьи:

Ограничения, сопряженные с эволюцией
Живые организмы — это сложные системы, которые потребляют энергию и простые химические соединения, используя их на построение собственного тела и производство потомства. Однако количество необходимых организмам энергии и химических вещест ...

макромир
Макромир и микромир - две специфические области объективной реальности, различающиеся уровнем структурной организации материи. Сфера макроявления - это обычный мир, в котором живет и действует человек (планеты, земные тела, кристаллы, бол ...

Развитие гипофиза (Hypophysis cerebri)
Как уже ранее, при описании развития первичной ротовой полости, ynоминалось вкратце, придаток мозга (hypophysis cerebri) имеет два отдельных зачатка. Один из них берет начало из эктодермы первичной ротовой полости (карман Ратке) и образуе ...

Разделы