При генерации потенциала действия (ПД) решающий вклад в этот процесс вносит поток ионов натрия (в гигантском аксоне кальмара) или натрия и кальция (в нейронах и кардиомиоцитах, гладких миоцитах), направленный внутрь клетки.
Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К+) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na+) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na+ С1- и НСОз-,).
При возбуждении проницаемость для ионов натрия на время, равное нескольким миллисекундам, резко возрастает, а затем снова падает. В результате катионы (ионы Na+) и анионы (С1-, НСОз) разобщаются на плазмолемме: Na+ входит в цитоплазму, а анионы нет. Поток положительных зарядов в цитоплазму не только компенсирует потенциал покоя, но и превышает его. Возникает так называемый «овершут» (или инверсия мембранного потенциала). Входящий поток натрия — результат его пассивного движения по открывшимся мембранным каналам по концентрационному и электрическому градиентам. Выходящий поток этого катиона обеспечивается калий-натриевой помпой.
По данным учебника В.О.Самойлова, в аксолемме активность Na-K-активируемой АТФазы довольно высока. Так, на 1 мкм2 мембраны нервного волокна, входящего в состав блуждающего нерва кролика, приходится около 750 молекул этого фермента. В покое встречные потоки натрия уравновешены, тогда как при возбуждении (в течение существования ПД) система активного транспорта натрия оказывается неспособной моментально компенсировать резкое усиление входящего потока. Она делает это с некоторым запаздыванием. Из сказанного следует, что мембранные потенциалы (ПП и ПД) являются не равновесными, а стационарными, поскольку поддерживаются в условиях существования встречных ионных потоков через плазматическую мембрану. Сдвиги мембранного потенциала связаны с нарушением установившегося стационарного режима, причем возбуждение сопровождается усилением и входящего, и выходящего потоков натрия. Значит, возбуждение не выключает систему активного транспорта натрия, а, напротив, активизирует ее. Однако даже при максимальной активизации калий-натриевая помпа не может воспрепятствовать кратковременному накоплению небольшого количества Na+ в цитоплазме.
Но в опыте было зафиксировано и другое. После кратковременного повышения натриевой проводимости величина мембранного потенциала довольно быстро восстанавливается на уровне потенциала покоя. Оказалось, что в этом процессе существенна роль калиевых каналов, которые обеспечивают реполяризацию мембраны за счет выхода из клетки какого-то количества ионов К+ как носителей положительного заряда. В разных возбудимых тканях механизм потенциала действия обеспечивается вкладом и других катионов, в частности, кальция. ПД миоцитов связан с входящим в цитоплазму из интерстиция потоком не только Na+-, но и Са++. В скелетных мышцах вклад Са++ в ПД невелик, в миокарде он больше, а в гладких мышцах доминирует.
Повышение проницаемости мембраны для внеклеточных катионов, приводящее к генерации потенциала действия, обеспечивается существованием потенциал-зависимых ионных каналов.
Потенциалзависимые натриевые каналы в плазматических мембранах различных клеток представлены несколькими типами. Это белковая молекула массой около 230 кДа, состоящая из 4 субъединиц и домена, несущего сильный положительный заряд.
В структуре ионного канала выделяют два основных функциональных элемента — селективный фильтр и воротный механизм (ворота).
Селективный фильтр канала предназначен для захвата только тех ионов, которые проводятся через канал. Степень селективности определяется стереометрией белковой молекулы и зарядом аминокислотных остатков. Ионная пора имеет размер, строго соответствующий проводимому иону с учетом гидратной оболочки. Вместе с тем степень избирательности ионной поры не абсолютна, через натриевый канал могут следовать, хоть и значительно хуже, и близкие по заряду и величине ионы натрия.
В последние годы в экспериментах выяснилось, что селективный фильтр обладает неизменяемой структурой, не способной изменять просвет в разных условиях. Переходы канала из открытого состояния в закрытое и обратно связаны с работой не селективного фильтра, а воротного механизма. Под воротными процессами, происходящими в той части ионного канала, которая называется «воротами», понимают такие изменения конформации белковых молекул, образующих канал, в результате которых его пора может сжиматься или расширяться. В первом случае «ворота» закрыты, а во втором — открыты. Следовательно, «воротами» принято называть те функциональные группы белковых молекул, которые обеспечивают воротные процессы. Важно, что «ворота» приводятся в движение физиологическими стимулами, т.е. такими, которые присутствуют в естественных условиях. Среди физиологических стимулов особую роль играют сдвиги мембранного потенциала,, что и предопределяет активацию потенциалзависимых ионных каналов.
Прочие статьи:
Этология сов. Взаимоотношение различных видов сов
между собой
Во время наблюдений за отдельными парами сов, заселивших наши искусственные гнездовья, нами были отмечены также несколько случаев пересечения кормовых угодий различных пар сов одного или разных видов. Отчасти это было перекрывание с парам ...
Зарождение и эволюция жизни на Земле. Современное представление о происхождении
жизни
Вопрос о происхождении жизни – один из самых трудных в современном естествознании. В первую очередь потому, что мы сегодня не можем воспроизвести процессы возникновения жизни такими, какими они были миллиарды лет назад. Ведь даже наиболее ...
Очертания
Голова умеренной величины, широкая, сверху слегка уплощенная, снабжена мощными жевательными мышцами, обеспечивающими крайне сильный прикус. Лобно-носовая подушка низкая, клюв не выражен. Все плавники сильно увеличены, в особенности спинно ...